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Supporting several wireless communication standards with a single
hardware device demands for a flexible hardware platform that allows
the implementation of these standards in software while still meeting
the tight real-time requirements. Furthermore, these Software Defined
Radio (SDR) platforms have to achieve a viable trade-off between the
contradicting requirements of flexibility on one side and area, power
as well as energy efficiency on the other side.

One promising approach is to utilize programmable Application
Specific Instruction Set Processors (ASIPs) for the computationally
intensive functions of the baseband transceiver. Thanks to their pro-
grammability they provide sufficient flexibility while being optimized
for the targeted application.

In the course of this paper we highlight an ASIP design based
on the LISA 2.0 language and Synopsys’ Processor Designer. The
primary target of the ASIP is the computational complex MIMO
OFDM preprocessing and equalization, e.g. found in the IEEE
802.11n standard. Furthermore, a Virtual Platform prototype of a
Software Defined Radio (SDR) platform has been designed to inves-
tigate the real-time performance of the complete hardware platform.
This Virtual Platform allows for detailed system-level performance
analysis and area estimation at an early design stage prior to finalizing
the time-intensive RTL design.

I. INTRODUCTION

SDR platforms provide a significant benefit for the devel-
opment of wireless communication devices ranging from a
single handset to infrastructure systems, such as femtocells
or complete base-stations. For example, low volume markets
like satellite or military communication systems can benefit
from reduced hardware development cost due to a common
hardware platform. Other markets like base-stations and mo-
bile handsets can profit by multi-standard support on a single
hardware platform as well as reduced maintenance costs due
to remote software updates.

In general, these SDR platforms are based on a heteroge-
neous Multi-Processor System-on-Chip (MPSoC) that has the
potential to provide a viable trade-off between flexibility and
efficiency. Based on their definition, heterogeneous MPSoC
platforms consist of multiple processor cores of different
types. These processor cores range from simple RISC-based
processors over Digital Signal Processors (DSPs) to highly
specialized Application Specific Instruction set Processors
(ASIPs). Apart from these processor cores, a wide variety
of different hardware components needs to be integrated.
Examples are memories, interrupt controller, DMAs and HW
accelerators which implement dedicated functions due to su-
perior performance and/or better energy efficiency. As a result,
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development of a complete SDR platform is one of the most
complex assignments today. This includes the design of the
individual HW IP components, the integration of the hardware
components on the system level as well as the development
of the distributed software that is executed on the various
processing elements of the platform.

In this work we present a platform design of an SDR
for baseband operations of MIMO OFDM transceivers that
includes the development of individual IP components and a
Virtual Platform for system-level design. In the computational
intensive data plane processing, developed IP components are
optimized for the target functions of the application. Hence,
in traditional designs, these have been developed as hardwired
architectures with only limited configuration support. For
functions that do not require more flexibility, like OFDM
demodulation (basically FFT/iFFT processing) this principle
is kept for the sake of improved implementation efficiency.
Other parts of the physical layer processing like channel
estimation, MIMO preprocessing and spatial equalizing can
benefit from software programmable architectures to support
a large range of different wireless communication standards
such as WLAN, WIMAX and LTE. However, for acceptance
of system designers a performance comparable to hardwired
solutions is mandatory.

In order to implement the control plane processing, that
occurs in modern wireless communication standards we incor-
porated our in-house developed RISC processor core called
IRISC that comes with an optimized C-compiler based on
ACE’s CoSy compiler design environment [1]. Both processor
cores (ASIP for MIMO processing and IRISC) have been de-
veloped with the LISA 2.0 language and Synopsys’ Processor
Designer [2]. For efficient investigation of the system-level
performance and the development of the firmware software,
we developed a Virtual Platform (VP) of the complete het-
erogeneous MPSoC platform in SystemC using of Synopsys
Platform Architect [2]. This VP contains cycle accurate models
of all processor cores based on the Transaction Level Mod-
eling standard 2.0 (TLM2) [3] that allows efficient software
development and debugging on the system-level. Furthermore,
additional SystemC components for all required hardware IP
blocks have been designed for platform integration and timing
measurements. Based on the quick modeling and simulation
capabilities this Virtual Platform is available prior to the
availability of the RTL implementation and hence fastens the
overall design process.
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Fig. 1. MIMO OFDM Transceiver Overview

II. RELATED WORK

SDR platforms provide a significant benefit for the devel-
opment of wireless communication devices. Already today the
market of base-stations and femtocells is dominated by SDR
platforms e.g. from Texas Instruments (TMS320TCI6618 [4])
or Freescale (MSC8156 DSP [5]) that support a wide variety
of standards such as WCDMA/HSPA/HSPA+, TD-SCDMA,
GSM, LTE and WiMAX. In addition, latest platforms for
handsets like the Nvidia Icera [6] platform and Qualcomm
Gobi [7] platform adopt the concept of SDR.

Common feature of all these platforms is that they are
build on the concept of a heterogeneous MPSoC. While the
control-plane processing is typically executed on a RISC based
architecture e.g. ARM9 or ARM11 [8], the processor cores
of the data plane processing are equipped with SIMD (single
instruction multiple data) instructions. Examples for these data
plane processors are Tensilica ConnX [9], CEVA-X/XC [10]
and EVP [11] architectures. Other processor cores can be
extended with additional vector units like the STxP70 [12]
and hence can be used for such operations. In addition,
these platforms incorporate dedicated hardware circuits for
improved execution of dedicated transceiver functions. For
example, most platforms have a hardware accelerator for fast
fourier transformation that is an efficient way to implement
orthogonal frequency-division multiplexing (OFDM).

One common drawback of these heterogeneous SDR plat-
forms is that software development gets extremely challenging
compared to single core development or on a homogeneous
architecture. For example, porting an application from one
processor to the other requires in a homogeneous environment
basically no effort, while in a heterogeneous architecture the
software needs to be ported to the target processor. In addition,
the DSPs and ASIPs in the data plane processing have to be
programmed typically in Assembly or a low-level C with the
use of intrinsic and compiler known functions (CKFs). Clearly
this requires a significant effort and it is of practical interest
to limit or to avoid such time intensive software development.

Our previously introduced Nucleus methodology [13] and
tooling [14] target this issue. They guarantee an effective
design approach that allows simple porting of a transceiver

implementation to another platform while maintaining high
efficiency [15]. The key idea is to first analyze the transceiver
to be implemented based on it’s computationally intensive
algorithmic kernels. Since these Nuclei account for most of the
computational effort, efficient implementations - Flavors - are
implemented for each specific hardware architecture. Thanks
to the effective tooling and mapping process porting of a given
transceiver from one to the other platform can be carried out
quickly and with limited design effort.

III. MIMO OFDM TRANSCEIVER APPLICATION

Before introducing the details of our SDR platform, a
common transceiver structure (Fig. 1) is highlighted, whereas
a more extensive overview can be found in [16]. Within this
work we will concentrate on the WLAN 802.11n communica-
tion standard as an example for a MIMO OFDM transceiver.
The related physical layer application is depicted in Figure 1
that shows a single MIMO OFDM communication link and
an open-loop receiver architecture with configurable transmit
(Nt) and receive (Nr) antennas.

The incoming bits from the Medium Access Control (MAC)
layer are first encoded and interleaved to cope with channel
impairments and to protect them against burst errors. Next, the
coded bits are mapped to complex symbols and distributed
among the multiple data streams, which are sent via the
corresponding transmit antennas. Each transmit path contains
a complete OFDM transmitter that first maps the symbols
to the related data subcarriers and pilots are added to their
subcarriers. The time signal is obtained by applying an inverse
Discrete Fourier Transform (iDFT/iFFT) and a cyclic prefix is
inserted to guard the OFDM symbol from inter-symbol and
inter-carrier interference. Finally, the signal is windowed and
passed to the analog domain by D/A conversion.

The lower part of Figure 1 illustrates the receiver archi-
tecture that performs the inverse operations of the transmitter
and attempts to eliminate the impact of the wireless channel.
After A/D conversion the received signal is represented in
digital state and the cycle prefix is removed. With the help
of a DFT(FFT) the signal is transformed back to frequency
domain and the guard carriers are removed from the OFDM
symbols. Before reconstructing the actual data payload, MIMO
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preprocessing is carried out. This comprises first the esti-
mation of the channel matrices for each subcarrier. Second
an equalizer matrix needs to be obtained1, which requires a
matrix inversion. In general, matrix decompositions methods
are preferable to direct inversion techniques thanks to their
numerical stability, hence most implementations use QR,
Cholesky, or Divide-and-Conquer decomposition schemes. By
applying spatial equalizing the channel impact is mitigated
on the transmitted baseband data. The corrected symbols are
mapped from their complex baseband representation back to a
bitwise representation by means of soft symbol demapping.
The received soft bits are de-interleaved and decoded by
exploiting the redundancy added during channel encoding.
Finally data is passed to the CRC check and back to the MAC-
layer.

A. Application Analysis

For data transmission over the wireless communication
channel, we use a common system model where the symbol
stream is represented by a vector x of dimension Nt × 1
whereas each symbol is selected from a given signal con-
stellation with zero mean and transmit power of Es per
antenna. The transmission coefficients between each antenna
pair are modeled to be normalized independent and identically
distributed (i.i.d.) complex circular Gaussian distributions with
zero-mean, and remain invariant for all time slots within a
frame, but may change to another independent state in the next
frame. The wireless channel can be modelled as a matrix H
of dimension Nr×Nt with the transmission coefficients as its
elements. Assuming perfect synchronization during reception
of the signals, the system can be expressed for a quasi-static
Rayleigh flat-fading MIMO channel as

y = Hx + n (1)

with n being an additive space-time noise vector that is as-
sumed to be temporally and spatially white and is of complex
circular Gaussian distribution with zero mean and variance σ2

n.
Following our previous work based on the Nucleus method-

ology [17] a detailed analysis of state-of-the-art receiver
algorithms has been carried out in the past [15]. Based on
this analysis, we selected transceiver algorithms that provide
a suitable trade-off between computational complexity and
algorithmic performance. Please note that a vast variety of
algorithms exist, hence only a limited set has been investigated
here that will be briefly introduced next.

a) OFDM Modulation and Demodulation: OFDM
(de-)modulation can be efficiently realized by using the iFFT
and FFT algorithm [18] if the number of subcarriers is a
power of two. Both iFFT and FFT implementations differ
only in the utilized twiddle factors, hence can be efficiently
implemented by the same hardware architecture. Thanks to
the well known and frequently utilized FFT algorithm a vast
variety of implementation exists, e.g. radix-2 or mixed-radix
implementations.

1Other approaches exist like sphere decoding, that do not require an
equalizer matrix but are not investigate in the course of this work.

Within the targeted MIMO OFDM transceiver application
for each OFDM symbol up to four FFTs/iFFTs have to be
carried out. Accordingly, an efficient hardware support for this
part of the receiver is requested, that will be active always
while receiving or transmitting data. Hence, we implemented
this function on a dedicated hardware accelerator that will be
highlighted in Section IV-B.

b) Channel Estimation: To mitigate the channel impact
on the received symbol vector y, the channel matrix H has to
be estimated. In conformance with the IEEE 802.11n standard,
a block type channel estimation over training symbols inserted
at the beginning of a frame has been applied [19]. With such
pilot structure the channel condition is estimated once at the
start of a frame and is used for all data symbols in the frame.

Block type channel estimation requires a minimum of Nt

preamble symbol vectors pi of dimension Nt × 1 to estimate
the channel condition. Accordingly, the entire preamble can be
expressed as a matrix P = [ p1 ... pNt

]. After transmission
over the wireless channel, the receiver obtains the signal

S = HP + N (2)

with the received symbol vectors si of dimension Nr × 1
that are combined into a matrix S = [ s1 ... sNt ] and N =
[n1 .. nNt ] is the additive noise matrix.

A simple, low complexity solution is the least squares
method which can be formulated as follows if matrix P is
selected as an orthogonal matrix (common for most commu-
nication standards including IEEE 802.11n)

ĤLS = SPH
“
PPH

”−1

=
1

Nt
SPH with PPH = NtINt . (3)

Here (.)H stands for the Hermitian transpose and matrix INt

denotes an identity matrix of dimension Nt.
Channel estimation requires complex valued matrix oper-

ations for the selected least square (eq. 2) and minimum
mean square error ([15]) methods. In the likely case of a
BPSK modulated preamble this can be further reduced to
additions and subtractions of complex values since all entries
of matrix P are either +1 or -1. Using an MMSE based
approach computation of a reciprocal is required to obtain
channel estimates. One efficient approach for computation
is the Newton-Raphson method [20] that allows sufficiently
accurate approximation of the reciprocal with a few iterations
(typically 2-3 iterations should be sufficient for limited fixed
point precision).

c) Spatial Equalizing: Having obtained the channel esti-
mate Ĥ, the impact of the MIMO channel on the transmitted
data can be mitigated by spatial equalizing. Apart from a large
variety of algorithmic options, so-called linear equalizers are
often employed as suboptimal but computationally attractive
solutions. The output signal of a linear equalizer can be
expressed as:

x̂ = Gy (4)

where the design of the Nt × Nr filter matrix G depends
on the equalizing criterion. Well known criteria are zero
forcing and minimum mean square error (MMSE) approaches,

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum   All Rights Reserved

118



whereas the latter one achieves superior performance with
minor complexity increase. Accordingly, we apply an MMSE
based equalization scheme that computes the equalizer matrix
G by minimizing the expected mean square error between x̂
and the original payload data x.

G = argmin
G

E
˘
‖x− x̂‖2

¯
=

„
ĤHĤ +

σ2
n

Es
INt

«−1

ĤH. (5)

As a side note, the MMSE approach offers future extension
to iterative receiver architectures based on the MMSE-PIC [21]
and other iterative LMMSE [22] algorithms that achieve sim-
ilar algorithmic performance but yield far less computational
complexity compared to algorithms like sphere decoding [23].

Implementing the above discussed spatial equalization re-
quires the inversion of a complex valued matrix of dimensions
depending on the number of transmit and receive antennas. For
high data-rate modes of WLAN and LTE antenna constella-
tions up to 4x4 are supported. Accordingly inversion of a 4x4
matrix is requested. Direct matrix inversions with limited fixed
point precision suffers from numerical stability, accordingly
more robust matrix decomposition schemes e.g. QR-, LDLT -
and LU-decomposition [24] are typically used. Following a
flexible SDR approach we do not limit our implementation
to one or the other decomposition algorithm. For example,
iterative receiver architectures based on soft-in-soft-out sphere
decoding require a QR-decomposition while the MMSE-
PIC [21] can benefit from a LU-decomposition. Therefore,
when targeting a flexible SDR implementation common oper-
ations for matrix-multiplications, matrix-additions and matrix-
decompositions should be supported.

d) Soft-Symbol Demapping: Applying soft-symbol
demapping a soft bit representation is obtained from the
received complex symbols. This computes a log-likelihood
ratio (LLR) for each received bit. With application of the
max-log approximation and assuming that p (y|H,x) is
Gaussian, the noise is white Gaussian, the LLR for stream k
with the equalized symbol vector z is computed as:

L(bk,i) ≈ ρk

 
min
s∈A0

i

|zk − s|2 − min
s∈A1

i

|zk − s|2
!

(6)

ρk =
1

σ2
n

»“
HHH +

σ2
n
Es

INt

”−1
–
k,k

− 1 (7)

The scalar ρk denotes the signal to interference and noise
ratio (SINR) for stream k [25]. Whereas, A1

i represents a
subset of all constellation symbols that contain a one at
position i of their bitwise representation and A0

i denote the
ones with a zero at position i. An efficient implementation of
such LLR computation can be found in [26] when a Gray-
coded constellation is utilized (typically done).

Such an implementation of a soft-symbol demapping re-
quires computation of a piecewise linear function. Due to
the large amount of required soft-symbol demappings, special
instructions should be added to the ASIP to compute them
efficiently.
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Fig. 2. ASIP for MIMO processing architecture overview

IV. FLEXIBLE HW COMPONENTS

In this section, we present the three main HW components
of the envisioned SDR platform. First, the ASIP for MIMO
processing is highlighted, followed by a discussion of the FFT
HW accelerator and the IRISC control processor. For all com-
ponents synthesizable RTL implementations were developed
as well as a SystemC based simulation model for Virtual
Platform development.

A. ASIP for MIMO Processing

After the analysis of the application and the identification of
the computational kernels, we briefly summarize the selected
hardware components for the different transceiver functions.
As mentioned above, the FFT/iFFT components are active for
each received data symbol. Therefore, it is obvious that an
efficient hardware with limited flexiblility is an appropriate
implementation choice, which is introduced in Section IV-B.

The remaining transceiver functions require mainly com-
plex valued matrix/vector operations. Accordingly, we have
designed a more flexible ASIP that can efficiently compute
these functions, but still remains a programmble architecture.

An overview of the ASIP HW architecture is given in
Figure 2. As previously analyzed, key operations that have
to be carried out are vector- and matrix- computations with
complex values. Since the dimension of vectors and matrices
depends on the number of receive and transmit antennas
(typically up to 4x4) the ASIP HW has been designed with
the following features:

• Relatively large register file (64 registers) to minimize
memory accesses during computations. The area of reg-
ister file requires 88kGate that is approx. 43% of the total
area of the ASIP.

• Short 5-stage pipeline to avoid long stall cycles or nop
operations.

• Native support for complex data-types and all common
operations, such as addition/subtraction, (conjugate) mul-
tiplication, (conjugate) multiply accumulate/subtract.

• 2-way SIMD for all instructions operating on complex
values including random register access.

• Special instructions for computation of reciprocal and
inverse square root are available. Computation is based
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Area Prog. Mem. Data Mem. Freq.
(kgate) (words) (words) (MHz)

ASIP (24/24bit) 205 1024 (32bit) 512 (48bit) 400
FFT HW Accel. 46.18 - included 335
IRISC 22.2 2048 (32bit) 2048 (32bit) 435

TABLE I. Synthesis Results of ASIP for MIMO Processing, FFT HW Ac-
celerator, IRISC (Synopsys Design Compiler for the Faraday 90 nm standard
cell library under typical conditions (supply voltage 1.0 V, temperature 25 C))

on the Newton-Raphson approximation method. This ap-
proximation is carried out by first finding an appropriate
start value and then performing several iterations. These
two stages are reflected in the two special instuctions
initialize approximation and perform iteration.

• Special instrcutions are available for computing the log-
likelihood-ratio (LLR) computation of Gray-coded mod-
ulations by piecwise linear functions [26].

• Design time flexible data path, e.g. high precision fix
point format Q8.16 bit (=24 bit, one sign bit, seven integer
bits and sixteen fractional bits) for real/imaginary data.

• Two external simple handshake protocol interfaces with
separate read and write ports.

• Small data memory (1k, words with same data width as
data path) to store look-up tables and intermediate results.

• Small program memory (2k, words each 32 bit) due to
limited number of computational kernels and program
size

• Instructions for simple control mechanisms, e.g. loops
and if-else statements.

• Efficient IRQ In/Out interfaces that can be accessed via
special instructions.

Thanks to this rather simple ASIP architecture, implemen-
tation of the most common matrix-/vector-operations can be
efficiently programmed by a few lines of assembly. The same
applies to all common decomposition algorithms such as QR,
LDLT , LU and Strassen algorithm.

A.1 Implementation Results
In this subsection the implementation results of our ASIP for

MIMO processing are presented. First, the synthesis results are
highlighted, followed by a detailed analysis of the execution
characteristic of individual functions.

a) Synthesis Results: The ASIP was developed using
the Language for Instruction Set Architectures (LISA) and
Processor Designer by Synopsys [2]. In order to build an
efficient processor core, the design was started from scratch
with the required instructions that were analyzed in Section III-
A. From the LISA description of the ASIP, the Register
Transfer Level (RTL) description was automatically generated
as well as the simulator, assembler and linker.

The ASIP with a data format of Q8.16 bit was synthesized
with Synopsys Design Compiler [2] for the Faraday 90 nm
standard cell library under typical conditions (supply voltage
1.0 V, temperature 25 C). Table I shows the synthesis results
in terms of area and frequency.

b) Benchmark of MIMO Processing Functions: In order
to evaluate the performance of the developed ASIP, the indi-
vidual functions of channel estimation, MIMO preprocessing,

spatial equalizing and soft symbol dempping (LLR computa-
tion) have been implemented and benchmarked. Please note
that not only one golden implementation of each function
exists, e.g. spatial equalizing (eq. 5) requires the inversion of a
matrix that can be implemented in several ways. Accordingly,
multiple implementation results are given in Table II.

For comparison of the developed ASIP, we consider hard-
ware architectures found in literature. Since most of the tra-
ditional implementations make use of hardwired accelerators
for computing the equalizer matrix we compare the measured
performance with dedicated hardwired solutions which provide
some configuration support, e.g. number of transmit and re-
ceive antennas, but cannot be programmed like the developed
ASIP.

Table III depicts the comparison results. Obviously the first
three HW accelerators achieve a higher throughput of a factor
of approx. 2 up to 10. In general, this trade-off of up to one
order of magnitude matches well with other ASIP results when
compared against a specialised non programmable architec-
ture. Compared to other weakly programmable architectures
like [27] the developed ASIP achieves an approximately 2
times higher throughput. Please note that our ASIP can also
efficiently support spatial equalization and LLR computation
(see. Table II). Hence, compared to all other architectures these
transceiver functions do not require additional hardware.

B. FFT HW accelerator

Besides the previously discussed MIMO processing, OFDM
modulation is another key feature of modern communication
standards. Thanks to its structure, OFDM modulation can
be efficiently implemented via a Fast Fourier Transforma-
tion [31]. FFT is a well known algorithm and many imple-
mentation variants exist. We selected a radix-2 decimation-in-
frequency memory-based FFT implementation with conflict
free memory addressing (see Fig. 3). All supported FFT
sizes can be selected at run-time by setting the appropriate
configuration of the HW accelerator.

Since the primary goal of this work is an implementation
of a flexible MIMO OFDM transceiver that can execute the
802.11n WLAN standard, the number of subcarrier, respec-
tively of the FFT size, is limited to 128. Accordingly, the
maximum FFT size has been set to 128 at design-time. During
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Fig. 3. Radix-2 Decimation-In-Frequency memory-based FFT HW acceler-
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Function Subfunction executed per subcarrier Cycles Exec. Time @ 400MHz

Channel Estimation Least squares method 46 115 ns
Spatial Equalizing using QR decomposition Computation of Equalizer Matrix G 169 422.5 ns

SINR computation ρk 38 95.0 ns
Spatial equalization 28 70.0 ns

Spatial Equalizing using LDLT decomposition LDLT decomposition 108 270.0 ns
SINR computation ρk 64 160.0 ns
Spatial equalization via backsubstitution 40 100.0 ns

Spatial Equalizing using Strassen algorithm Computation of Equalizer Matrix G 145 362.5 ns
SINR computation ρk 30 75.0 ns
Spatial equalization 28 70.0 ns

LLR computation per symbol vector 4QAM 13 32.5 ns
16QAM 19 47.5 ns
64QAM 24 60.0 ns

TABLE II. Benchmark of transceiver functions executed on ASIP for 4x4 antenna case

Core Luethi [28] Patel [29] Senning [30] Wu [27] ASIP ASIP
Algorithm QRD/SQRD GR QRD GR QRD MGS Strassen Alg. Reg. QRD SW Strassen SW
Technology 180 nm 130 nm 130 nm 65 nm 90 nm 90nm
Area [kGate] 48.7 36.0 182 120 205 205
Frequency [MHz] 167 270 320 400 400 400
Processing Time (scaled) 201 nsa 103 nsa 657 nsab 706 nsc 375 ns 363 nsc

Throughput (scaled) 4.98 M QRD/sa 9.75 M QRD/sa 28.89 M QRD/sab 1.42 M EqMat/sc 2.67 M QRD/s 2.67 M EqMat/scd

TABLE III. Comparison of ASIP for MIMO Processing
(a Simplified technology scaling applied. b includes SINR calculation. c includes computation of equalizer matrix (eq. 5) d includes external memory accesses)

run-time, the HW accelerator can be configured to FFT sizes
of 2N with N = {1, 2, ..., 7}. The HW architecture was
implemented in VHDL at RTL. Table I shows the synthesis
results in terms of area and frequency.

Execution time of each possible FFT computation is deter-
ministic, since one radix-2 operation is computed per cycle.
Hence, the resulting computation time is determined by

cycles = log2(n) ∗ n
2
∗ 1
fmax

, with n = FFT size.

Please note that this denotes only the computation time and
does not contain reading and writing of input and output
values.

When synthesized for a Faraday 90 nm standard cell library
under typical conditions (supply voltage 1.0 V, temperature
25 C) our architecture executes a 64 point FFT in 567 ns
running at a frequency of 335 MHz. Compared to other
architectures in literature, similar performance is achieved. For
example, the architecture described in [32] executes a 64 point
FFT in 640 ns when running on it’s maximum frequency of
100MHz. Considering a simplified technology scaling (130nm
to 90nm) this compares to 443 ns for our technology, while
our architecture should have a smaller gate count2.

C. RISC processor for control path operations
For building a complete SDR platform control-path pro-

cessing is of vital importance. In contrast to the processing
characteristics of the data plane, the control plane requires
more flexible hardware solutions and demands software pro-
grammability on a high-level language. Accordingly, other

2Giving precise numbers is difficult since only area requirement and no
gate count equivalent is given for the architecture in [32])

solutions [33], [34] incorporate ARM or other RISC like
architectures with rich C-compiler support.

Thus, we make use of our internal IRISC processor core.
The IRISC comes with a rich instruction set and a compiler
designed with ACE CoSy compiler designer. Key features of
the IRISC are:

• Harvard architecture
• RISC instruction set with conditional execution and mul-

tiplier support
• 5 pipeline stages
• 32 bit data width
• 16 general purpose register
• Fully bypassed and interlocked architecture
An RTL description has been generated with Synopsys

Processor Designer and synthesis has been carried out. The
implementation results are depicted in Table I.

D. Additional HW components
The challenging requirements of the physical-layer pro-

cessing requests optimized and efficient components for data
exchange and synchronization along with the hardware com-
ponents for the computational part. Accordingly, a set of
hardware components and related SystemC components has
been developed that follows a common interface approach
and hence can be easily connected to the other hardware
components. For the SDR platform we have developed the
following IP components as functional and timing approximate
SystemC components that will be utilized for system-level
design.

• Communication architectures
– Simple handshake based point-to-point communica-

tion link
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Fig. 4. FER comparison for 4x4 MIMO OFDM transceiver (Simulation
parameters: detector: MMSE-QRD, ch. est.: LS, BCJR decoder: r = 1/2)

– FIFO based point-to-point communication link
– Bus based communication architecture

• Direct Memory Access (DMA) controller
• Interrupt controller
• Cyclic Redundancy Check (CRC) hardware component
• Channel decoder (LDPC) functional SystemC model

based on component available from literature [35]
• Memories

E. Algorithmic Verification of individual IP components

Before inspecting the system level performance, it needs
to be evaluated that quality of service (QoS) constraints in
terms of bit-error-rate (BER) and frame-error-rate (FER) are
kept by the targeted hardware implementations. For efficient
verification, a simulation framework has been designed that
supports evaluation of each single IP component within a com-
plete system simulation. This becomes necessary as reliable
information about QoS can only be obtained by a physical
layer simulation. Accordingly, a framework for testing indi-
vidual hardware components has been developed based on a
C++ simulation library.

This allows for simple and quick analysis of individual
functions of a transceiver or of the complete transceiver
implementation by a plug & play fashion. To obtain a lower
bound of the BER and FER, a reference C++ implementation
based on the EigenLib [36] and scientific libraries such as the
GNU scientific library [37] is co-simulated so that the effect
of the hardware implementation can be easily analyzed.

The ASIP operates on a fixed point implementation hence
sacrifices some precision. Therefore, an extensive algorithmic
performance evaluation has been carried out by making use of
the above described simulation testbed.

A channel simulation has been carried out featuring an
AWGN and an i.i.d. Rayleigh Fading channel. Similar to the
TGn-C channel model of WLAN 802.11n, channel condition
with a 150ns power delay spread is assumed and a power
delay profile that has an exponential 20dB drop. Both BER
and FER of both fixed point implementation and floating point
reference have been measured, while the more important FER
is illustrated in Figure 4 that has been obtained by simulation
of the ASIP and QRD based spatial equalizing for 4x4 antenna
case and 16QAM constellation.

The obtained simulation results show only a minor degra-
dation of the QoS performance. These simulation results are
comparable to results found in literature [18].

V. SYSTEM-LEVEL DESIGN AND VIRTUAL PLATFORM

With the measured algorithmic QoS in range of a floating
point implementation, a virtual platform (VP) was developed
in parallel to the RTL implementation. Thanks to the quick
development cycle of the SystemC based VP, which was
developed with Synopsys Platform Architect (PA) [2], the
following main objectives were targeted with the VP.

1) Firmware development of data and control path. High
simulation speed and superior debug capabilities of the
VP compared to traditional RTL simulation techniques
allows for quick software development.

2) Latency and throughput measurements prior to finalized
RTL implementation. Early availability within the design
cycle has enabled us to measure the latency and through-
put of the complete hardware architecture.

3) Multicore debugging and performance investigation. Ex-
tensive debug and tracing of the VP features allow
efficient analysis of performance within the system. Es-
pecially, when it comes to synchronization and memory
access conflicts this becomes of vital importance.

4) Design space exploration. Modular and advanced script-
ing features of PA support efficient design space explo-
ration, e.g. evaluation of the number of required processor
cores in the data path processing.

As a side note, the most important hardware components
such as the ASIP, the FFT HW accelerator and the IRISC have
been verified also on RTL, but verification of the complete
system is not yet finished. Currently, we are confident that the
developed software can be used with no or minor modifications
in the final implementation.

Thanks to the efficient simulation speed of the cycle approx-
imate VP, the system architecture as illustrated in Figure 5(b)
has been developed. To achieve the WLAN 802.11n latency
and throughput requirements, we have designed the architec-
ture to cope with latency constraints for a minimum frame
with two OFDM data symbols. As the Short Inter-Frame Space
(SIFS) packet [38] needs to be send after 16 µs, this latency
constraint is most severe during the SoC architecture design
(see Fig. 5(a)). Accordingly, a system architecture with parallel
processing in the data plane is mandatory. As illustrated, four
FFT HW accelerators are operating in parallel for the four
data streams that are received. To simplify the ASIP subsystem
four configurable DMA components retrieve the data from the
FFT components and move the data ordered by subcarriers
to the ASIPs for MIMO processing. In total four ASIPs
have been instantiated that operate on different subcarriers
(each 13 subcarriers) to achieve the latency constraint for
the 4x4 antenna mode. The computed LLR values are passed
to the decoder and interleaver interface which decodes the
received bits on the basis of codewords. Finally, after the cyclic
redundancy check the received data is forwarded to the MAC
layer.

The system level architecture was derived on basis of
the individually measured implementations of the different
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(a) Latency and throughput requirements for baseband processing for a frame (2 data symbols) with
most demanding timing constraints

(b) System-level design of MIMO OFDM transceiver architecture for operation of up to 4x4 antenna
constellation

Fig. 5. Execution time requirements and SoC platform including application mapping

transceiver functions. To confirm these theoretical consider-
ations, which might underestimate the impact of synchroniza-
tion and/or memory access conflicts, a system level simulation
based on the VP has been carried out.

The results shown in Figure 6 verify that the computed
execution behavior is reflected in the simulation environ-
ment. Compared to the primary computation of the individual
transceiver functions, a comparable large overhead exists in
accessing data memories. However, the measured execution
characteristic for a worst case frame with only two data slots,
shows that the throughput and latency constraints are suffi-
ciently achieved by the current implementation. The obtained
latency for passing the decoded bit stream back to the MAC
layer is 12.13µs. This leaves in total 3.87µs for the RF receive
interface, the MAC layer and the sending of the SIFS packet,
which is a common valid assumption [39].

VI. CONCLUSIONS AND OUTLOOK

In this paper we highlighted a complete SDR platform
for a MIMO OFDM transceiver. The underlying hardware
architecture is a heterogeneous MPSoC. Data plane processing
is efficiently handled by a programmable ASIP that achieves
significantly higher performance than general purpose DSPs,
but surely has some performance loss compared to dedicated
non-programmable solutions. For efficient support of FFT
and LDPC decoding, specialized HW circuits are considered.

For flexible control-plane processing we have included our
in house designed RISC processor core. Furthermore, effi-
cient support for inter-core synchronization is achieved by
an interrupt controller and advanced interrupt handling of the
ASIP. Our future work will concentrate on finalizing the RTL
design and to optimize the performance of thee individual IP
components and the complete system.
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